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On December 2, 2020, a 
month after the US  
presidential election, 

President Donald Trump stated, 
“It is statistically impossible that 
the person, me, who led the charge, 
lost [the election].” In the election’s 
aftermath, Trump and many of his 
supporters argued that statistical 
irregularities in various vote totals 
proved election results in some 
states were illegitimate.

Many arguments in this vein 
were put forward; some were 
unserious and could be quickly 
dismissed, but others required 
mathematical effort to evaluate. 
An argument of the latter type 
is that Trump’s county-level votes 
in Pennsylvania follow Benford’s 
law, while the votes of his oppo-
nent, Joseph Biden, do not, and  
this provides evidence of voter 
fraud in Pennsylvania. This argu-
ment raises the question, “Can we 
apply Benford’s law to presiden-
tial county votes in order to detect 
electoral foul play?”

What Is  
Benford’s Law?
First, we must understand Benford’s 
law. Suppose we take a naturally 
occurring numeric data set such as 
the population of each of the 2,109 
towns in Pennsylvania according to 
the 2010 census and consider the 
leading digit of each population. 
We might expect the leading digits 
are uniformly distributed, where 
approximately 1/9th of the town 

populations have a leading digit of 
i for each 1  i  9. However, the 
distribution of leading digits is not 
at all uniform. Instead, a popula-
tion is much more likely to have 
a small leading digit than a large 
one: 30.7 percent of the popula-
tions have a leading digit of one, 
18.5 percent a leading digit of two, 
and so on, with the percentages 
decreasing until the leading digit 
of nine occurs for only 4.4 percent 
of the populations.

Surprisingly, many real-life 
data sets (such as the number of 
employees at American companies 
or the total number of COVID 
cases by county in the US as of 
November 20, 2021) have distri-
butions of leading digits that are 
similar to the Pennsylvania town 
population distribution. 

Benford’s law formalizes this 
observation by stating that for 
some naturally occurring data sets, 
the probability that the leading 
digit is i is log (1 + 1/i). The popula-
tion data from Pennsylvania towns 
matches these Benford probabili-
ties pretty closely.

Many data sets do not follow 
Benford’s law. For example, exam 
scores in a large calculus section 
(where a possible score lives in the 
standard range of 0 to 100) will 
almost never follow this law, as 
few scores start with a one. This 
raises the question: What kind of 
data follows Benford’s law? Before 
analyzing a data set, is there a way 
to know if the data can be expected 
to follow a Benford distribution? 

There is no known complete list of 
necessary and sufficient conditions 
for a naturally occurring data set 
to follow Benford’s law; however, 
some necessary—or close to neces-
sary—conditions are known.

For example, a (mostly) nec-
essary condition for a naturally  
occurring data set to follow  
Benford’s law is that the numbers 
in the data set span several orders 
of magnitude. The smallest town 
in Pennsylvania had a population 
of 10 in 2010, while the largest 
had a population of 1,526,006, 
and thus the populations of towns 
in Pennsylvania span two to 
seven digits. Therefore, before we  
analyze the populations of  
Pennsylvania towns, we can rea-
sonably expect this data will follow  
Benford’s law. Similarly, county  
votes for a major presidential candi-
date in each state usually span three 
to seven digits, and thus there is some  
a priori hope that such data will 
follow Benford’s law. For more 
general information about Ben-
ford’s law, including the types of 
data for which the law might apply,  
see Benford ’s Law: Theory and  
Applications by Stephen Miller.

In the aftermath of the 2020 
presidential election, the most 
prominent argument for electoral 
fraud that involved Benford’s 
law stated Biden’s precinct-level 
vote totals in cities like Chicago 
and Philadelphia did not follow  
Benford’s law (while Trump’s did). 
As many others have pointed out 
previously, this argument fails 
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immediately because, among 
other issues, precinct-level votes 
generally do not span multiple 
orders of magnitude. If we con-
sider Biden’s precinct-level vote 
totals for a particular city, the 
majority of that data consists of 
three-digit numbers. Thus, there 
is no reason to expect precinct-
level votes to follow Benford’s law 

and the argument fails. However, 
because county votes span several 
orders of magnitude, we cannot so 
quickly dismiss the county-level 
Benford argument.

Figure 1 shows the leading 
digit distribution for Trump’s  
(resp. Biden’s) county votes in Penn-
sylvania in red (resp. blue). The black 
bars show the predicted Benford 

distribution for Pennsylvania’s 67 
counties. The height of the black bar 
for digit i is 67log(1 + 1/i), which 
is the expected number of county 
vote totals with leading digit i for a 
Benford distribution in Pennsylva-
nia. Trump’s votes seem like a good  
Benford fit, while Biden’s do not.

The argument under consider-
ation states the failure of Biden’s 

Figure 1. The frequency of leading digits of county votes for Biden in 2020 (blue) and Trump in 2020 (red) in  
Pennsylvania. The black bars show the expected Benford distribution.

Leading Digit i
Benford probability  

log (1 + 1/i )
1 0.30

2 0.18

3 0.13

4 0.10

5 0.08

6 0.07

7 0.06

8 0.05

9 0.05

Table 1—Benford Probabilities for the Leading Digit Distribution
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Pennsylvania county votes to fol-
low Benford’s law is an indication 
of voter fraud in Pennsylvania. This 
argument rests on the following 
three premises:

Premise One: County-level 
votes for a major presidential 
candidate in each state should 
follow Benford’s law.

Premise Two: Biden’s county 
votes in Pennsylvania are 
anomalous or out-of-bounds 
with respect to Benford’s law.

Premise Three: A failure of 
county votes to follow Benford’s 
law indicates fraudulent activity.

To assess the county-level  
Benford argument, we evaluate 
each of these premises.

Do Presidential 
County Votes in  
Each State Follow 
Benford’s Law?
We investigate this question by 
examining county votes state-by- 
state for the two major presidential 
candidates in past US presidential 
elections and determining if they 
follow Benford’s law. Of course, 
we must be precise about what we 
mean for a particular vote distribu-
tion to “follow Benford’s law” to 
do this. How do we make rigor-
ous the observation that Trump’s 
county votes in Pennsylvania are 
more “Benford-like” than Biden’s?

First, we decide which elec-
tions to examine. From the seven 
most recent presidential elections 
(1996–2020), we consider all states 
with at least 40 counties. Since  
each election has a choice of  
Republican or Democratic vote 
totals, we define a data point to be a 
choice of state, year, and party, total-
ing 448 such choices. Each data 
point has a county-vote leading digit  
distribution that can be compared 
to what Benford’s law predicts. 

We compare the leading digit 
distribution of a given data point 
to the corresponding predicted 
Benford distribution using the 2 
goodness-of-fit test, a standard 
statistical test used to compare 
an observed distribution to an 
expected distribution for categori-
cal data. Let n be the number of 
counties in a state and let Oi denote 
the number of counties in which 
votes for a given candidate have 
leading digit i. Let Ei = n  log(1 
+ 1/i) be the expected number 
of counties in which votes have 
leading digit i, as predicted by  
Benford’s law. Then, for each par-
ticular data point, we calculate the 
2 test statistic:

The smaller the 2 value, the 
better the fit of the observed  
distribution is to the expected  
Benford distribution. Table 2 pro-
vides the leading digit information 

for presidential county votes in 
Pennsylvania. From this data, we 
calculate 2 = 5.68 for Trump’s 
county-level votes and 2 = 16.69 
for Biden, confirming that Trump’s 
votes are a better Benford fit  
than Biden’s.

For context, if the Oi were 
approximately uniformly distrib-
uted in Pennsylvania, then 2  
30. If 2  15.51 for a given data 
point, then we can say with statis-
tical significance at the 5 percent 
level that the Oi do not follow a 
Benford distribution. However, as 
with most cutoffs in statistics, the 
choice of 5 percent is essentially 
arbitrary. A distribution with 2  
15.51 might not look particularly 
Benford-like, even though we can’t 
formally reject the null hypothesis 
that the distribution is Benford.

To evaluate Premise One, we 
calculated the 448 2 values for 
each of our data points. Sixty-four 
of these values (36 Democratic and 
28 Republican) are larger than the 
5 percent significance cutoff value 
of 15.51, thus 14.3 percent of our 
data doesn’t follow Benford’s law 
according to the 2 goodness-of-fit 
test. Furthermore, many of the data 
points with 2  15.51 do not look 
particularly Benford-like.

The median 2 value of the 448 
we calculated is 9.88, meaning a ‘typ-
ical’ outcome in our data is something  
like the 2020 Republican votes 
in Tennessee shown in Table 
3, where 2 = 9.77. If we were 

Leading digit i 1 2 3 4 5 6 7 8 9

Oi Biden 14 9 4 13 4 8 5 5 5

Oi Trump 28 12 5 6 4 3 4 3 2

Ei 20.17 11.80 8.37 6.49 5.31 4.49 3.89 3.43 3.07

Table 2—Leading Digit Distribution of County Votes  
for Trump and Biden in Pennsylvania
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inclined to find this data suspi-
cious, we would observe that 
the dramatic dip at O3 and the 
increasing values at the tail of the  
distribution produce a histogram 
that doesn’t look like a good  
Benford fit, even though 2  15.51.

Thirty-seven percent of our data 
points satisfy 9.77  2  15.51, 
meaning that a large percentage 
follow Benford’s law in the sense 
that we can’t reject a Benford 
fit at the 5 percent significance 
level, but they can have individ-
ual digits that drastically deviate 
from what Benford predicts (for  
Tennessee, consider i = 3) and  
have histograms that can look 
strikingly different from the clas-
sic Benford histogram.

The 2 goodness-of-fit test 
measures how well a leading digit 
distribution fits the corresponding 
Benford distribution. To investi-
gate Premise One, we could also 
analyze how well an individual 
observed digit Oi matches the pre-
dicted Benford digit Ei. Instead 
of considering the overall digit 
distribution, we could focus on 
individual digits, testing the null 
hypothesis Oi /n = Ei /n for each 
i. This requires a straightforward 
hypothesis test for a proportion 
using z-statistics and is common 
in Benford analysis. For examples 
of this kind of analysis (and further 
explication of 2 tests in a Benford 
context), see Mark Nigrini’s clas-
sic paper, “A Taxpayer Compliance 
Application of Benford’s Law.”

We performed the individual 
digit test for the 4,032 Oi values 

in our data set; 200 of our 448 
data points contain at least one 
digit i such that Oi /n deviates 
from Ei /n with statistical signifi-
cance at the 5 percent level. Thus, 
45 percent of our data points do 
not follow Benford’s law in the 
sense that there exists an i where 
the observed proportion of county 
votes with leading digit i signifi-
cantly deviates from the Benford 
expectation, even though many of 
these data points satisfy 2  15.51. 
This occurs for Trump’s 2020 vote 
totals in Tennessee, where we do 
not reject the null hypothesis that 
the overall leading digit distribu-
tion follows Benford’s law, but the 
proportion of Trump’s vote totals 
that begin with leading digit three 
does significantly deviate from the 
Benford prediction at the 5 percent 
significance level.

Based on data from recent presi-
dential elections, we determine that 
county vote totals are Benford-like 
in general, but we can’t expect every 
county vote distribution to be a close 
Benford fit. Therefore, Premise One 
is somewhat true.

Are Biden’s County 
Votes in Pennsylvania 
Anomalous?
Is Biden’s 2 value of 16.69 in 
Pennsylvania anomalous or sus-
picious in some way? Of the 448 
data points, 29 Democratic and 
23 Republican satisfy 2  16.69. 
Thus, while Biden’s value is on 
the high end of the data, it is not 
an outlier. Biden’s county-level  
votes are also not anomalous 

for Democratic county votes in 
Pennsylvania; see Figure 2, which 
displays recent 2 values for county-
level vote distributions for both 
major presidential candidates in 
Pennsylvania and four other states.

In recent years, Democratic 
votes tend to produce large 2 val-
ues in Pennsylvania. It is not clear 
why this is the case. Some states 
tend to have high 2 values for either 
Republican or Democratic votes, 
and this can perhaps be explained 
by factors like the geographic dis-
tribution of voters. For example, 2 
values for the Republican candidate 
in Iowa are large, spanning from 
27.36 all the way up to 42.95. In this 
state, Republican county vote totals 
are sometimes a worse Benford fit 
than an unBenford-like uniform 
distribution. These numbers might 
indicate that Republican voters are 
geographically distributed in such a 
way that county votes won’t produce 
a Benford distribution. 

As an aside, we note Biden’s 
county-level votes in states other 
than Pennsylvania do not raise 
any 2 red flags with respect to  
Benford’s law. Across all the states 
we examined, Biden’s median 
2 value was 7.55 (well below 
the median value of 9.88 for all 
data points) and his largest value 
was 16.86. By contrast, Trump’s 
median value across the 2016 and 
2020 elections was 10.34 and he 
achieved nine 2 values larger 
than Biden’s maximum. If Biden’s 
Benford-fit in Pennsylvania were 
cause for concern, then many of the 

Leading digit i 1 2 3 4 5 6 7 8 9

Oi 29 17 4 11 9 8 4 5 8

Ei 28.60 16.73 11.87 9.21 7.52 6.36 5.51 4.86 4.35

Table 3—The Leading Digits of Trump’s 2020 County Vote Totals in  
Tennessee (Oi Row), and the Predicted Benford Distribution (Ei Row)
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Figure 2. 2 values for county-level vote distributions for the two major presidential candidates in five states

county vote totals for Trump would 
raise similar red flags.

It is possible that Biden’s  
Pennsylvania votes are Benford-
anomalous in ways other than a 
high 2 value. For example, Biden’s 
distribution has exactly one statis-
tically significant digit, i = 4, where 
we reject the null hypothesis Oi /n 
= Ei /n. Across our 448 data points, 
there are 46 that contain two or 
more statistically significant dig-
its, and thus Biden’s Pennsylvania 
distribution is not anomalous in 
this respect.

Alternatively, some people who 
found Biden’s Pennsylvania data 
concerning were bothered by the 
spike in Biden votes at digit four, 

where O4 = 3.25  O3, claiming 
such a dramatic increase over a 
previous digit is suspicious. To test 
this, we searched our data points 
to find all instances in which there 
exist i  j such that Oi  3.25 ∙ 
Oj and Oj  0. There are 92 such 
instances, 47 Republican and 45 
Democratic, and thus such spikes 
are not uncommon. For example, 
in Indiana in 2020, O8 = 2 while O9 
= 11 for the Republican votes. In 
Michigan in 2020, Trump’s county 
votes create a slowly building spike 
at the tail end of the leading digit 
distribution, with Oi values of 22, 
13, 11, 10, 8, 2, 3, 6, 8. 

Biden’s Pennsylvania distribu-
tion has features like a high 2 

value that aren’t exactly common 
in our data, but also aren’t anoma-
lous. It is possible that we could 
find a convoluted condition with 
respect to which Biden’s county-
level Pennsylvania performance 
is anomalous, but then we would 
be grasping at straws to justify a 
predetermined conclusion. We  
conclude that Premise Two is 
false. With respect to Benford’s 
law, Biden’s 2020 county vote data 
in Pennsylvania is not suspicious. 

If an anomalous 2 value were 
cause for concern, then President 
Trump’s votes in states such as 
California or South Carolina (see 
Figure 2) would raise red flags. This 
leads to our final premise.
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Does a Benford 
Failure Indicate 
Fraudulent Activity?
Even if premises one and two 
were true, the county-vote argu-
ment under consideration requires 
that a statistical ‘irregularity’ (e.g., 
a failure to conform to Benford’s 
law) is an indication of fraudulent 
activity. However, there are several 
reasons other than fraud why vote 
totals might fail a particular sta-
tistical test.

For example, the Democratic 2

value for Arkansas in 1996 is 18.75, 
which is a bit of an outlier for 
Arkansas Democratic values (see 
Figure 2). It is possible this large 
value means there was Democratic 
fraud in Arkansas AR in 1996. 
On the other hand, 1996 is the 
only year in our data set in which 
the Democratic candidate was 
from Arkansas, and 1996 featured 
a strong performance (relative to 
the rest of our data) by a third-
party candidate. Without further 
investigation, we can’t know if a 
particular statistical irregularity 
was due to fraud or other factors 
such as relatively strong or weak 
third-party performance, relatively 

high or low voter turnout, disrup-
tions caused by a pandemic, etc. 

Furthermore, Premise Three 
contains an assumption that goes 
unstated, but is clearly implied: 
Anomalous votes are an indica-
tion of fraudulent activity by the 
party that received those votes. 
Th is implicit assumption is false. 
(Trump received five of the 20 
largest 2 values in our data set, 
so this is fortunate for him.) For 
example, Trump claimed that, in 
swing states like Pennsylvania, cor-
rupt election offi  cials threw out 
his ballots and corrupted voting 
machines switched Trump votes to 
Biden. If these claims were true, we 
would see statistical irregularities 
in Republican votes, and this would 
not imply that fraud was commit-
ted by Republicans. A failure to 
follow Benford’s law can, in some 
circumstances, be an indication of 
foul play, but it is fallacious to say 
that such a failure in an electoral 
context necessarily implies voter 
fraud by a particular party.

Conclusion
The argument that the failure 
of Biden’s county-level votes in 
Pennsylvania to follow Benford’s 
law is an indication of voter fraud 
is interesting and cannot be dis-
missed entirely. Th e argument rests 
on three premises, which we inves-
tigated using recent presidential 
election data. Unfortunately, for 
proponents of the argument, the 
premises went 0.5 out of 3 and 
the argument fails. However, the 
argument allowed for all sorts of 
data-crunching fun that included 
the use of 2 goodness-of-fi t tests, 
hypothesis tests for a proportion, 
and outlier analysis. In this sense, 
the argument succeeds. If you would 
like to play with the data yourself, 
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it is available at https://github.com/
brgrhrng/Benford_Project.

Even though Benford’s law has 
not been successfully applied to 
detect fraud in US presidential 
elections, we note this law can be 
used to detect fraudulent behav-
ior in other contexts. Famously, 
Benford’s law has been used to 
detect accounting and financial 
fraud and been deemed admis-
sible for use in a court of law for 
such purposes.

In closing, we remark that while 
Benford’s law is not useful as a 
fraud-detection tool for county-
level votes in US presidential 
elections, prior research suggests 
it can be used to help detect fraud 
in other elections. For example, 
Walter Mebane in his CHANCE
artic le “Fraud in the 2009 
Presidential Election in Iran?” has 
made a strong argument that the 
version of Benford’s law that speci-
fi es frequencies for second digits 
can be used to detect fraud in the 
2009 Iranian presidential elec-
tion. At fi rst glance, this might be 
good news for people who would 
like to use Benford’s law to detect 
fraud in Biden’s votes; however, 
we invite the reader to verify that 
Trump’s 2020 county vote totals in 
Pennsylvania fail the second-digit 
version of Benford’s law spectacu-
larly, while Biden’s do not.  
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